Application Note: Chemistry Advancements for Automated Resin Removal: PLM-403-SUB


I. Summary
II. Testing & Validation of SLA Resin Removal Solution
III. Conclusion

This paper examines PostProcess Technologies’ newly released resin removal chemistry, PLM-403-SUB (referred to as 403 from here on), as part of its comprehensive Automated Resin Removal Solution. It will review the effectiveness across a range of materials, safe operations, and process optimizations as compared to traditional alternatives isopropyl alcohol (IPA) and tripropylene glycol monomethyl ether (TPM).

The goal of the new 403 chemistry is to, in concert with the software and hardware components of the resin removal solution, ease the multiple burdens that typically arise when removing uncured resin following various Vat Photopolymerization processes. With this solution, users can dramatically reduce cycle times, process steps, and the typical operational risk factors that come with legacy resin removing solvents.

The PostProcess 403 chemistry is a new formulation that improves upon the performance of the previously released PLM-402 SUB (referred to as 402 from here on). The primary benefits of the solution are the same as those identified previously with the 402 detergent, including industry-leading cycle times and reduction of required process steps. Unlike previous methods which may have required both TPM and dirty IPA baths followed by various rinse steps, cycle times with 403 in PostProcess’s patented hardware technology are frequently less than 10 minutes. Additionally, the process takes place within just one piece of equipment. This effectively cuts down on both attended and unattended process time. The user can simply load and unload from the system, and perform a quick rinse before moving to the post-cure step. This is compared to cycle times of 20+ minutes in multiple TPM/IPA baths which involve operator intervention throughout the cycle to move from one step to the next.

The 403 chemistry has been successfully used to remove uncured resin from the model materials listed in Table 1 (as of publication date noted in the footer). Ongoing validation tests for additional resins are being conducted with the intention of covering the vast majority of resins available, and will be updated periodically in this document available on the
PostProcess website.

One of the most important factors for users, after ability to clean parts, is the detergent life, or longevity. This typically determines the frequency of labor-intensive equipment cleaning efforts. Longevity for resin removal detergent is typically defined as the amount by weight that the chemical solution can hold and still effectively remove resin. As most users look to remove resin as quickly as possible, the longevity of various solvents are compared while holding 10 minute cycle times. From the data depicted in Figure 1 and in Table 2, 403 has significantly better longevity (capacity by weight of resin in solution at 10 minutes) than all other typical solvents (i.e., IPA, DPM, TPM) used to remove uncured resin from printed parts. Likewise, 403 has 6% improved longevity versus PostProcess’s previously released industry- leading chemistry, 402.

Figure 1: Saturation of various chemical solvents for resin removal

The saturation of the 403 chemistry with removed resin can be measured using the hydrometer (see Figure 2 and Table 3 below), which is provided with every PostProcess Automated Resin Removal Solution.

FIGURE 2: Hydrometer

Due to its increased longevity, 403 offers a significant reduction in waste generation compared to other solvents. Subsequently, the lower frequency of chemistry changeouts reduces the required maintenance labor hours in the process.

The detergents used in the resin removal process will also contain the uncured resins in solution. These resins do not become less hazardous after removal, and are all considered hazardous materials in the chemicals used to remove them. The frequency and volume of waste disposal will be a factor in the total cost to dispose of the exhausted chemicals.

An initial set of tensile testing has been conducted to show mechanical property integrity compared to existing solvent cleaning methods. Accura ClearVue, Accura 60, and Accura Extreme Grey were all subjected to a resin removal process using 403 and IPA, along with a control group in which the uncured resin was carefully wiped off. Following these procedures, all tensile bars underwent a curing step according to manufacturer recommendations. Key properties have been compared below.

As shown above, tensile strength at yield is within 5% of the control group for both 403 and IPA processed parts. Values for tensile at break are also nearly identical for 403 and IPA. While elongation varies slightly, it still lies within the manufacturer specifications (3-15% for ClearVue, 5-13% for 60, and 14-22% for Extreme Grey) for both 403 and IPA. In summary, when moving from an IPA cleaning process to the PostProcess solution utilizing the 403 chemistry, mechanical properties will not be significantly affected.

Inhalation and combustion risks during the resin removal process are a widespread concern for all resin removal users. Additionally, regulations can significantly limit the amount of combustible resin removal liquids that can be stored on site in a facility. The 403 chemistry has improved safety and environmental characteristics that address these issues, as seen in Table 5 below.

The high flash point of 403 (220°F, 104.4°C) means far less vapor will end up in the air near the machine, especially when compared to a volatile solvent like IPA. With typical process temperatures ranging from ambient temperatures (75 – 85°F, 23.9 – 29.4°C) up to 120 – 130°F (48.9 – 54.4°C) for the PostProcess Resin Removal Solution, there is still a very large gap before reaching the ¼ LEL temperature of 163°F (72.8°C).

For higher volume resin removal, where large volumes of chemical are required to remove the resin, 403 addresses storage limitation issues with flammable liquids.

The amount of flammable/combustible resin removal liquids that can be kept on-site is limited by various regulations. Liquids with a flashpoint below 200°F (93.3°C) are usually limited to 120 gallons (454 L). Conversely, liquids with a flashpoint greater than 200°F (93.3°C) can usually be stored in quantities up to 13,200 gallons (5000 dekaliters). Because 403 has a flashpoint of 220°F (104.4°C), it can operate and be stored in much larger quantities than other resin removal chemistries, as summarized in Table 6. Table 6 is specific to the United States. Please refer to your local regulations when outside of the US.

The new 403 chemistry is an environmentally-friendly alternative. It has a much lower vapor pressure than other solvents, and a 220°F (104.4°C) flashpoint that makes it much safer to use. In 402, D-limonene was used to help with resin removal. Although generally safe to use, it has been replaced in 403 with a more environmentally-friendly option that reduces risks following the waste removal step.

Once saturated with resin, 403 can be recovered for reuse by distillation. Under a typical vacuum distillation, up to 90%+ of 403 by saturation weight (amount of resin in solution) can be recovered for reuse of the detergent. This makes 403 a particularly sustainable option.

With reduced waste generation, lower vapor pressure, and higher flashpoint than any other option on the market, the 403 chemistry is the most sustainability-friendly solution available.

PostProcess Technologies’ new 403 chemistry as a part of its comprehensive Automated Resin Removal Solution is a definitive improvement over current mechanical and chemical technologies used to remove resin in Vat Photopolymerization 3D post printing. Through a combination of breakthrough chemistry, patented hardware technology, and proprietary software, uncured resin removal can be accomplished in 10 minutes or less for simultaneous trays of printed parts. This newest formulation offers a much higher resin capacity, yielding a longer useful life compared to other chemical methods. With intuitive software controls and process monitoring, the speed and ease of use of the solution results in increased consistency at levels required for production volumes. Ultimately, the attended operator time is greatly reduced and the 403 chemistry is inherently safer to use and store.

Can you benefit from optimizing your SLA resin removal process?
Request a benchmark here.

2495 Main Street, Suite 615
Buffalo NY 14214, USA

Les Aqueducs B3, 535 Route des Lucioles
06560 Sophia Antipolis, France
+33 (0)4 22 32 68 13

Read More

France’s Cetim one of first to adopt Desktop Metal Shop System

New collaboration to accelerate adoption of industrial metal AM

Desktop Metal has announced a new collaboration with Cetim, the France-based Technical Centre for Mechanical Industry. The partners will work together to promote and accelerate the global adoption of metal additive manufacturing across industrial sectors by identifying market opportunities for AM and supporting innovation across Cetim’s customer network. As part of the partnership, Cetim has already become, in last August, one of the first adopters of Desktop Metal’s new Shop System metal binder jetting platform.

Cetim was inspired to work with Desktop Metal after successfully installing and utilizing the Studio System at its facility in Cluses, France. The center will continue to leverage this system for rapid prototyping and low-volume production while has also added the Desktop Metal Shop System’s capability for low-volume prototyping or mid-volume runs of complex metal components. These resources will enable Cetim customers from across the aerospace, oil and gas and automotive sectors, to name a few, to explore new AM applications and opportunities.

“As the demand for metal AM continues to grow, it is challenging for many of the mechanical industry companies we work with to identify the right solution that meets their needs and then to implement it in an effective and cost efficient way,” explained Pierre Chalandon, COO at Cetim. “Desktop Metal technologies with both the Studio System and new Shop System completes our additive manufacturing machines park. From a general point of view, Metal Binder Jetting Technology is promising for a large part of our clients. Desktop Metal solutions portfolio covers the full metal product lifecycle, which is complementary to our experience on sintered material and finishing operations.”

The fine detail of a part 3D printed using the Shop System

The Desktop Metal Shop System, unveiled at Formnext 2019, is a metal binder jetting technology designed specifically for machine shop use and is capable of producing complex metal components with both speed and quality. The solution is also notable for its relative affordability: the Shop System starts at $150,000. Desktop Metal says the system is designed to enable shop manufacturers to “tap into new opportunities to reduce their costs and increase revenue.”

Through the partnership, Desktop Metal and Cetim will also work on a range of research projects involving Desktop Metal’s metal AM technologies, including design for metal AM processes, post-processing and finishing technique qualification, workflow optimization and materials development. Cetim brings to the table its extensive knowledge of metal AM processes (including LPBF, WAAM, MBJ), which it has built up over the past 15 years. In recent years, Cetim has been particularly involved in the development of metal binder jetting, which it believes creates new opportunities for production capacity and material range. The French center is also actively involved in the normalization of metal AM, coordinating the Additive Factory Hub (AFH) with the aim of implementing AM to address industrial and economic challenges.

“When it comes to empowering industrial companies with the additive manufacturing technologies of the future, Cetim is truly one of the leaders in Europe,” concluded Ric Fulop, CEO and Co-Founder of Desktop Metal. “We are excited to partner with Cetim as one of the first customers for our ground-breaking Shop System and are eager to collaborate with Cetim on our shared efforts to change the way that companies manufacture around the globe.”

Please do read the official article by Tess Boissonneault here.

Read More

EnvisionTEC lanches D4K Pro Dental

The highest resolution desktop DLP 3D printer for the dental segment

EnvisionTEC is introducing the new D4K Pro Dental, the highest resolution 4K desktop 3D printer specifically for the dental segment. The D4K Pro from EnvisionTEC includes the fastest print speed for a standard DLP printer (intended as non-continuous). As such it can deliver extremely accurate parts with the finest detail available.

The D4K Pro is built on an industrial 4K DLP projector which ensures stable performance for many years. The D4K Pro is compatible with all EnvisionTEC DLP resins for the dental industry, providing essential solutions for applications from models to full dentures and everything in between.

Designed for chairside and small labs, the D4K Pro is the industry’s newest solution, brought to you by the original inventors of DLP 3D printing technology. EnvisionTEC has been leading the way for dental 3D printing since 2003, with equipment and material innovations that have revolutionized the dental and orthodontic industries.

The company founded by Al Siblani has been serving the dental market since 2008, when Jim Glidewell walked up to an EnvisionTEC trade show booth and asked: “Can you do teeth?”

Glidwell is the owner of Glidewell Laboratories in Newport Beach, CA, one the single largest dental labs in the US. Today, Glidewell 3D prints dental prosthetics on nearly a dozen EnvisionTEC printers, both desktop and production models. “Our Perfactory 3D printer from EnvisionTEC allows us to create highly precise wax patterns at a fraction of the time required for a hand wax-up,” Glidwell said.

And EnvisionTEC offers an industry-leading dental materials portfolio that includes several FDA- and CE-approved materials for long term use in the mouth. These include NextDent C&B MFH, NextDent Denture 3D+, E-Guard, E-Guide Tint, and E-IDB, with more added regularly. These dental materials 3D print a full range of models (dental and orthodontic), castables (crowns, bridges, partial frameworks), restorations (crown, bridge, full roundhouse, as well as complete dentures) and appliances (surgical guides, bite splints, indirect bonding trays).

Please do read the official article by Davide Sher here.

Read More

Desktop Metal’s Live Sinter: How simulation software is mitigating sintering distortion

Sintering distortion is a fact of life in the Metal Injection Moulding industry. However, through the combination of an experienced eye, the ‘trial and error’ iteration of a part’s design, and the use of sintering supports when needed, stable high-volume production is achieved. With the growth of processes such as metal Binder Jetting, however, the need to manufacture a much wider range of parts at lower production volumes and in a shorter time frame means that a more efficient and streamlined approach is required. Andy Roberts, VP Software at Desktop Metal and the inventor of Live Parts™, presents the simulation software along with a number of case studies illustrating its capabilities

With the ability to eliminate tooling, dramatically reduce manufacturing timelines and create more complex parts than ever before, Binder Jetting (BJT) is quickly revolutionising the way many metal parts are produced. To reach its full potential, though, there is one hurdle that is often overlooked – sintering.
As with Metal Injection Moulding (MIM), BJT parts must be debound and then sintered at temperatures close to the melting point of the alloy being used. The sintering process can cause parts to shrink by as much as 20% and, if not properly supported, there is a real risk of parts slumping and sagging. The result is parts that may emerge from the sintering furnace cracked or deformed beyond usability. Even when not cracked, such parts are typically produced to tight tolerances and any requirement to correct the dimensional accuracy of the parts through post-processing creates additional overhead and expense.

Fig. 1 A Desktop Metal Production System installed at Indo-MIM’s metal Binder Jetting operation in San Antonio, Texas, USA (Courtesy Indo-MIM Inc)

For MIM suppliers, the low-tech solution has for decades been simply a mix of having an experienced eye for appropriate part design and basic trial-and-error: testing various combinations of part geometry, ceramic setters and rafts, then locking in the combination that works for mass production. However, what if, instead of fighting against sintering based deformation, we joined forces with it?

Fig. 2 This image shows three parts – the original CAD part (dark grey), a scan of the sintered straight part (purple), and the negative offset part generated by Live Sinter (light grey). The geometry of the sintered straight part matches the shape that Live Sinter produces after its sinter simulation (Courtesy Desktop Metal)

The need for a sintering simulation tool

A first-of-its-kind software application, Live Sinter is capable of simulating, in just minutes, the deformation parts undergo as they sinter, allowing manufacturers to predict how parts will change shape as they densify. Developed over a year in collaboration with Desktop Metal’s materials scientists, the software uses iterative simulation operations to create ‘negative offsets’ – proactively deforming parts by specific amounts in specific directions that allow them to achieve their intended shape as they sinter. Importantly, though, these negative offsets are not simply inversions of the deformation that parts experience during sintering. On the contrary, once the offsets are created, they represent an entirely new simulation challenge.

Fig. 2 shows three parts – the original CAD part (dark grey), a scan of the sintered straight part (purple), and the negative offset part gener- ated by Live Sinter (light grey). The geometry of the sintered straight part matches the shape that Live Sinter produces after its sinter simulation. The software uses the red vectors to derive green vectors that transform original points A to negative offset points C, thus forming the negative offset part. Importantly, the green negative offset vectors are not the negatives of the red vectors. Both the magnitudes and directions of the vectors are different. Live Sinter can generate the green negative offset vectors by using its sintering simula- tion engine. It is also noteworthy that, in performing a negative offset, Live Sinter not only transforms the geometry from points A to C, it also transforms the amount of material (metal powder) and the build orientations of cells. The negative offset process creates an entirely new physics problem that has its own sintering simulation results. The goal of these results is to produce a part represented by points C that sinters to the shape represented by points A.
The need for accurate, automatic, high-speed simulation tools such as Live Sinter is undeniable – in large part because a significant increase in part throughput is among the primary benefits that comes with Additive Manufacturing. If manufacturers hope to capitalise on the speed and agility of mass-production via AM, the rest of the manufacturing design process, as it ramps up to production, must be equally fast, and making sintering more predictable is a critical step.

Creating rafts and supports to hold parts during sintering is time- consuming, certainly, but the process is also expensive. In some cases, supports use more material than the parts themselves and, at scale, it can be the difference between a part that makes economic sense and one that does not. By predicting shrinkage and distortion during sintering, Live Sinter can reduce or fully eliminate the need for supports. The end result, despite sintering with minimal or even no rafts or supports, is parts that emerge from the furnace at near-net shape, reducing waste from failed builds and the time needed to post-process parts to meet specific tolerances.
While Live Sinter works across all Desktop Metal platforms, it is primarily targeted for use with the company’s Binder Jetting systems. Initially, Live Sinter will be available as a standalone application for download and local installation. In a future release, Desktop Metal may also offer a cloud-hosted version of the software.
Live Sinter may also be bundled with the sale of certain Desktop Metal Additive Manufacturing systems and will have features specifically tailored to Desktop Metal’s own technology and material offerings, but the technology is compatible with any sinterbased Powder Metallurgy process, including MIM.


Fig. 3 A screenshot of the Live Sinter software (Courtesy Desktop Metal)

Additive Manufacturing presents new sintering challenges

As the adoption of metal Additive Manufacturing, and, in particular, binder jet systems which deposit liquid binder onto metal powder to build parts layer-by-layer, has grown in recent years, so too has the demand for the sintering of metal powder parts. Whilst MIM and BJT parts share many similarities, including the requirement for debinding and sintering at near-melting point temperatures, in many ways the comparison between the two processes is limited to this step of the process. Creating a MIM part begins by creating a mould. Metal powder and binder are then mixed and injected into this mould to create what are referred to as ‘green’ parts, which go through a debinding process before being sintered in a furnace.

Additively manufacturing parts, by comparison, eliminates the need for moulds and other tooling or fixturing, allowing manu- facturers to quickly create parts, opening the door to highly-complex parts as well as mass customisa- tion from one build to the next.
While AM reduces part turnaround time and increases new part throughput, the lengthy trial-and- error process of finding a sintering solution becomes ever more impractical. To keep up, manufac- turers need simulation tools that can quickly predict how parts will behave in the furnace.
In addition, AM enables parts larger than those typically supported by MIM, meaning distor- tion during sintering can have a larger effect on their final shape. These factors and many others point to the need for a product like Live Sinter – a powerful simulation engine capable of modelling the complex physics at work as metal parts reach temperatures as high as 1,400°C.

Fig. 4 Without the negative offsets generated by Live Sinter, this drape bar test part shows a pronounced droop in the middle (top). To counteract the deformation, Live Sinter arches the top bar and tips the feet outward (middle) allowing the part to return to straight after sintering (bottom) (Courtesy Desktop Metal)

The challenge in modelling sintering behaviour

The notion of simulating how mate- rials respond to gravity, shrinkage, density variations, elastic bending, plastic deformation, friction drag and more is not a new idea, but it is an incredibly difficult one. Part of what makes sintering so difficult to model is the fact that it involves both thermodynamic and mechanical transformations that take place under intense heat, making them difficult to observe.
To monitor those changes, manufacturers have only two real options – either halting the sintering process mid-stream and examining parts after they cool, or installing windows in the furnace to observe distortions from images taken at high temperature.
With few other options, the goal has long been to find a way to simulate the process and, though attempts have been made to do just that, those models must replicate a host of factors, including material properties, density, stress, strain – both elastic and plastic, and friction contact, to name just a few.
Further complicating those efforts, simulating the process based on first principles means other factors such as the micro-behaviour of the material at the particle level, models of heat transfer, chemical reactions to heat and the mechanics involved in simulating the shrinkage and plastic deformation caused by factors like creep strain, must also enter the equation.
The difficulty of creating a model that incorporates all these factors means that, to date, most attempts to simulate sintering behaviour have come from academia and have relied on custom code. Ultimately, though, the vast complexity of the models, combined with a lack of data from inside hot furnaces, has made the process virtually impossible.

A novel, integrated approach to simulation

Live Sinter, however, takes an alter- native approach. Rather than working entirely from first principles, it uses a multi-physics engine borrowed from the gaming world which runs on NVIDIA GPUs – the same proces- sors found in high-end gaming PCs. Capable of modelling 700,000-plus particles with mass and radii, the multi-physics engine can simulate how particles collide with each other, as well as with the rigid bodies of arbitrary shapes. In addition, the engine models both body and direc- tional forces as they are applied to the particles.

The result is an extremely fast approximation – simulations are run in just minutes – of the physics inside the furnace, including shrinkage, plastic deformation, friction interaction and more. To refine the engine’s approximations, Live Sinter also employs a meshless FEA engine, which analyses the model at regular intervals to provide Von Mises stress based on data derived from the physics engine.

Complex physics, complex models

In order to simulate the complex behaviour of parts as they sinter, Live Sinter uses a number of approaches.
Simulation of the elastic behaviour of solid parts during sintering builds on a model developed by researchers at NVIDIA. By connecting a collection of simulated particles together with position constraints and dampers, Live Sinter can simulate behaviour such as stretching and compression, both of which are critical to under- standing how metal parts change shape during sintering.
At the same time, the software can model both static and dynamic friction, including the way in which the resulting reaction forces may change from part to part, either due to material differences or the presence of anti-sintering agents. By overlaying a model of plastic defor- mation on the elastic behaviour of the position constraints, Live Sinter can model how creep strain leads to non- uniform deformation of parts.
The system applies creep strain by relaxing the resting lengths of the position constraints over time, which indirectly changes the strain. In areas of higher stress and temperature, that change rate will be higher, leading to more deformation in some areas and less in others.

Fast simulation and excellent accuracy

Armed with its unique, dual-engine approach and highly complex models, Live Sinter can create a simulation of a furnace run in as little as three to seven minutes, as opposed to simulations using complex, dynamic physics which require hours to run. Based on that simulation, the software generates negative offsets in
fifteen to twenty minutes, something that other approaches to sintering simulation are unable to do.
The design of Live Sinter allows the system to strike a balance between speed and accuracy – the GPU-based physics engine provides a quick approximation of the sintering process, which can then be tuned to give more accurate results. The premise is that, while it may not be possible to know the coefficients for every property such as friction, compliance, grain size, diffusion rates or activation temperatures,
it may be possible to tune the physics engine to get the correct resulting shapes and produce successful parts.
To ensure the simulations are as accurate as possible, the first step in using Live Sinter is to tune the system using a series of test parts and scans of these parts after sintering. Once that tuning process is completee, an unlimited number of parts can be processed, simulating sintering distortion and producing negative offset geometry that results in straight sintered parts. Additionally, Live Sinter retains the high level of detail that makes metal AM an attractive manufacturing technology.

Fig. 5 Three images of a fibre heater body part. Live Sinter generates the CAD model (top) which is used to generate a green part (middle). As it sinters, the oval shape of the green part returns to its intended, circular shape (bottom). The images shown are not to scale. The slight warping in the flange is due to tiny density differences that occur during powder spreading. Algorithms to address those density changes are being developed for Live Sinter (Courtesy Desktop Metal)

Simulating macro and micro distortion effects

Generally speaking, the factors that affect how a part might behave during sintering fall into two main categories: macro factors, which cause distortion to the entire part, and micro factors, which might only occur in a small portion of the larger part. Importantly, Live Sinter compensates for both.
The bulk of the distortions compensated for by Live Sinter are related to macro factors, such as gravity and friction drag, which typically affect the entire part. In the case of the drape bar shown in Fig. 4, parts built without negative offsets showed a pronounced droop in the
middle. This is caused not primarily by gravity as one might guess, but rather the friction drag that prevents the bar’s feet from moving – the bottom portions remain fixed to the setter while the top regions are pulled together, causing a pivoting of the feet.
Were gravity and plastic distortion alone responsible for the distortion, the bar would not have this shape. The two outside feet would be planted flat. Instead, those feet are cocked inward far enough to lift the outside edges. Rather, the distortion is the result of the middle portion of the drape bar shrinking as it sinters. As that middle section
moves, however, the part’s feet remain immobile – friction drag prevents them from sliding inwards as far or as fast as the top of the bar, resulting in its characteristic distortion. While much of this distortion is caused by elastic bending during shrinkage, plastic creep strain takes over and causes the release of stress and freezing of the part in this final drooped shape.
The negative offsets created by Live Sinter instead arch the top of the bar up and tip the feet out, allowing the part to return to straight as it sinters. Because friction drag prevents the feet of the drape bar from sliding very much, the negative offset compensates for this by allowing the part to pivot around its largely immobile feet as it shrinks.
Interestingly, this places most of the part in compression as it sinters, rather than subjecting certain regions, such as the underside of the cross member, to tension, which would likely cause cracks.
For other parts, such as the heater body component shown in Fig. 5 from Desktop Metal’s Fiber™ machine, it became important to compensate for other issues. When built without negative offsets and minimal supports on the sides, the cylindrical part either warps or – in extreme cases – simply collapses on itself during sintering. Rather than build the part as a cylinder, the negative offset generated by Live Sinter creates an oval-shaped part. As it sinters, the combination of gravity and unsupported sides causes the oval shape to drop slightly, returning the part to its proper, circular shape.

In the case of the part known as a ULA bracket (Fig. 6), however, both of these factors – friction drag and gravity – are working at the same time to produce different effects in different regions of the part. When sintered without negative offsets, the feet of the bracket, as with the drape bar, tend to tip inward due to the shrinkage of the upper cross member combined with friction drag of the feet. At the same time, gravity, combined with an uneven weight distribution on the feet, causes the part to warp into a distinctive ‘duckfooted’ posture.

To compensate for these deformations, Live Sinter creates a part whose feet are tipped inward and arches the middle of the bracket, allowing the parts to return to straight during sintering. These macro effects, though, are just one type of feature that can lead to deformation of parts. The second is far more localised and stems from subtle differences in the density of the metal powder used in certain BJT processes.

Due to their symmetrical geometry, parts like the fuel swirler shown in Fig. 7 are far less susceptible to problems such as friction drag. If they do experience drag, their symmetrical shape means the entire part experiences it, so warping seen from looking down on the part is minimised. The pull of gravity also causes little, if any, changes during sintering.
However, when parts do exhibit problems, they may be related to density variations due to powder spreading or compaction in the powder bed.

Though this phenomenon is not completely understood, it is believed that changes in part density can occur as the powder spreading mechanism applies layers of metal powder over the build surface. Slight changes in density, built up through a part layer-by-layer, can cause a part to warp because areas of lower density shrink more than areas with higher density. In MIM, an equivalent scenario is when density variations arise as a result of powder/binder separation during the injection moulding process. Live Sinter, however, can compensate for these density variations and create negative offset designs that, when sintered, will result in straight parts.

Future outlook

Though it already shows great promise as a tool for making the sintering process more predictable, additional improvements to Live Sinter are planned for the future. One project, which will be undertaken in collaboration with Desktop Metal’s software engineers and material scientists, will add a layer of machine learning to identify correlations between changes to certain input parameters and changes in the deformation results in certain regions of a part. For example, if changing the friction coefficients for a part like the drape bar could lead to the part’s feet tilting in to a greater or lesser degree, a machine learning algorithm could spot the association, allowing the system to automatically tune these parameters to correct it.
A second project would add the ability for users to calibrate Live Sinter for even more precise results. Parts produced with negative offsets should emerge from sintering with straight geometry, but there may be cases where the geometry is not perfect, due to the software’s inability to accurately model some aspect of the shrinkage and deformation.

In these cases, users would be able to scan the finished part and identify areas that require fine tuning and the software would recalibrate the negative offsets to produce even more accurate results.

While the ultimate goal of Live Sinter is to eliminate deviations from specified part geometries that necessitate additional machining steps for BJT parts, the software today is unable to model sintering behaviour that emerges from different heat or gas flow patterns in furnaces or other complex thermodynamic transformations that take place in the furnace environment.
To address these issues, future versions of Live Sinter will include tools designed to allow users to scan finished parts, in which any number of parameters (related to different furnace runs, different production runs and more) were altered. The software can then automatically parts with usable results.

While Live Sinter is compatible with MIM parts, initially Desktop Metal will support materials offered on Desktop Metal AM systems and will continue to develop support for new materials in-house. In a future release, material optimisation capabilities will be made available externally, so customers can use Live Sinter to improve the accuracy of parts manufactured using their own novel materials.

Fig. 6 When built without negative offsets (top) this bracket tips inward and sags, while gravity and uneven weight distribution combine to produce a distinctive ‘duck-footed’ warping. To correct these issues, Live Sinter tips the feet inward and arches the middle of the bracket (middle), causing the part to return to its intended shape (bottom) as it sinters (Courtesy Desktop Metal)
Fig. 7 When sintered without using Live Sinter, tiny density variations in the metal powder cause the fins of this fuel swirler to warp in one direction or the other. Live Sinter compensates for those variations and produces a part that emerges from the furnace with straight fins (Courtesy Desktop Metal)

Answering a decades-old challenge

By making the sintering process more understandable and repeatable across multiple part designs, Live Sinter could offer benefits not just to individual manufacturers but to the Additive Manufacturing industry as a whole. For decades – even before the emergence of Binder Jetting technology – the Powder Metallurgy industry has struggled with questions of how to create supports that prop up parts in the furnace and, for decades, the answer has been to rely on the intuition of the relatively few engineers with years of hands-on sintering experience. With Live Sinter, however, the process becomes far more controllable – something that will likely help to assuage concerns of potential users.

For many companies, particularly those who have never used a furnace and have no experience with sintering, the notion of additively manufacturing and bulk sintering hundreds – or even dozens – of parts is a daunting one. While companies with MIM experience may have standard support structures they can turn to for Binder Jetting, many more are entering the process with limited exposure to Powder Metallurgy, so a product like Live Sinter is a critical tool that enables them to adopt metal Additive Manufacturing with confidence that they will be able to deploy the technology for mass production.
It has often been said that Additive Manufacturing will change the face of industry – Live Sinter is a crucial step in making it happen.


Andy Roberts
VP Software, Desktop Metal

From Pim International Magazine

Read More

PostProcess and Empire Group: A Superior Approach to SLA Resin Removal Drives Workflow Gains


As an early adopter of rapid prototyping and the first company in its region to embrace 3D printing,
service bureau Empire Group has been enabling clients with faster prototype delivery times and
increased productivity since 1999. Over the years, the company has expanded its offerings to include industrial design and engineering, rapid prototyping, rapid manufacturing, and graphic design, while continually priding themselves on artistry and craftsmanship. Understanding the nuances of each
material used within their shop, as well as the best finishing techniques, is critical to ensuring high product standards.

However, when it came to finishing Stereolithography (SLA) 3D printed parts, Empire Group faced bottlenecks that prohibited them from finishing parts as quickly as they wished. Though SLA 3D printing is acclaimed for its highly accurate part builds and cost-effectiveness, there is still a myriad of post-printing challenges that this technology produces.

In the case of Empire Group, resin removal with solvents and manual labor escalated into a more critical issue as the company grew. While the workload and number of printers increased, it was obvious that without an automated solution, the amount of time dedicated to post-printing would as well.

To keep their additive workflow moving smoothly, they implemented the automated PostProcess™ DEMI™ resin removal solution with proprietary SLA-formulated detergent. The DEMI utilizes agitation algorithms for software-controlled technology to swiftly remove excess resin, even in the narrowest of channels. This patent-pending technology, Submersed Vortex Cavitation (SVC), ensures consistency and prevents part damage while software controls the process.

Example SLA part


Developed specifically for additive manufacturing, PostProcess’s comprehensive solution delivered almost immediate benefits to Empire Group’s bottom line. The longevity of the PostProcess chemistry compared to the previously-used solvent (isopropyl alcohol) resulted in a quick positive ROI.

Empire Group has found the PostProcess DEMI to shine, especially when post-printing intricate parts or high-volume production of small parts. Now that they are able to handle resin removal in a fraction

of the time and spend less downtime on chemistry change-outs, the engineers and technicians at Empire Group can direct their energy on more value-added task such as quoting out orders, performing maintenance, build tray optimization, and more.

PostProcess’s software-driven solution has unlocked improvements across the board for Empire Group, on average reducing their SLA resin removal times by at least 50%, sometimes more.

Katie Marzocchi, Marketing Manager at Empire Group, said, “We’ve been in the additive realm for quite a while now, and in just a short time, the DEMI has optimized our workflow in the ways that matter most. From improving our bottom line and enabling scalability within our operation to reducing lead times and passing cost-savings on to our customers, the PostProcess solution is essential in helping us deliver high-quality products and service every time. We look forward to continuing our growth as a cutting-edge product development company, now with the DEMI in our tool belt.”

PostProcess™ DEMI™ Resin Removal Solution

About Empire Group
Empire Group is a full-service product development company located in Attleboro, Massachusetts. For over 20 years, we have been a trusted and dependable partner for our customers. Companies on the East Coast, and across the US, that are in the consumer goods, defense, medical device, aerospace/aviation, automotive, juvenile, and toy industries rely on us for our knowledge, experience, and wide range of services. For more information, visit

About PostProcess
PostProcess Technologies is the only provider of automated and intelligent post-printing solutions for 3D printed parts. Founded in 2014 and headquartered in Buffalo, NY, USA, with international operations in Sophia-Antipolis, France, PostProcess removes the bottleneck in the third step of 3D printing – post-printing – through patent-pending software, hardware, and chemistry technologies. The company’s solutions automate industrial 3D printing’s most common post-printing
processes with a software-based approach, including support, resin, and powder removal, as well as surface finishing,
resulting in “customer-ready” 3D printed parts. Additionally, as an innovator of software-based 3D post-printing,
PostProcess solutions will enable the full digitization of AM through the post-print step for the Industry 4.0 factory floor. The PostProcess portfolio has been proven across all major industrial 3D printing technologies and is in use daily in every imaginable manufacturing sector. For more information, visit


2495 Main St., Suite 615, Buffalo NY, 14214



Les Aqueducs B3, 535 Route des Lucioles, 06560 Sophia Antipolis, France

+33 (0)4 22 32 68 13

official website:

Read More

3D Printing Provides Innovation for Nearly Century Old Manufacturer

Article by: Peter Fretty Jul 15, 2020

As we have covered in recent months, COVID-19 played a pivotal role putting additive manufacturing on the map for manufacturers who otherwise had not taken its potential role seriously. For those willing to explore, additive has been enabled companies to speed up the prototyping process, enabled manufactures to build tooling without traditional delays. Of course, the true wins occur when the maturing technology enables meaningful innovations. And, true innovation often comes from the places you least expect.

Case in point: For more than 90 years, John Zink Hamworthy Combustion has operated on the outskirts of Tulsa, Oklahoma, building emissions control and clean air combustion systems, which production facilities around the world depend on to meet or exceed emissions standards. The company custom engineers burners, gas recovery and vapor control systems for a wide variety of energy, petrochemical and manufacturing customers.John Zink is a globally recognized leader in this space, but 21st century emissions problems require 21st century solutions. To help their customers meet rigorous environmental and efficiency standards, John Zink, a part of Koch Industries, recently invested in metal 3d printing technology from Desktop Metal to create parts that are engineered-to-order and optimized for each customer’s specific application.

“Engineers and designers are now able to create the designs they need to optimize each part’s function. In the past, tooling severely limited — and often strong-armed — design creativity. With 3D printing on our Studio System, designers can now transform their square peg/square hole mentality into free-form configurations and even complex geometries like fluted octagons,” Jonah Myerberg, CTO of Desktop Metal tells IndustryWeek. “This is a game changer for the industry as a whole, allowing companies like John Zink to produce custom, on-demand parts faster, cheaper and often times more optimal than with traditional means.”

After several months of working with the Desktop Metal Studio System, the world’s first office-friendly metal 3D printing system for rapid prototyping and low volume production, the companies today are sharing early results of the new additive manufacturing technology, which include:

  • Quick turnaround aftermarket replacement parts;
  • The ability to test different iterations of prototype designs faster;
  • Eliminating the need for casting tooling, saving both time and money because parts can now be printed in-house; and
  • Freedom of creating part designs that cannot be manufactured by traditional methods and can only be 3D printed.

“Our primary goal at John Zink is to custom engineer new systems that eliminate waste so our customers can operate safely and efficiently,” said Jason Harjo, design manager, John Zink. “Additive manufacturing rewrites the book on what is possible from a design standpoint, and working with Desktop Metal allows us a very low-cost entry point into the technology. The versatility of the Studio System has enabled our engineers and designers to find both applications for the technology as well as design and performance benefits we hadn’t even considered.”

Fuel Atomizer–Cost Savings 75%; Time Savings 37%

As a leader in developing innovative solutions to reduce emissions,John Zink has long understood that using atomizers to improve the fuel-air mix inside burners is one easy way to help customers minimize their environmental footprint. Using the Studio System, the company’s designers and engineers were able to prototype and test a variety of options before ultimately creating a radical new design featuring sweeping, airfoil-like fins. The geometric freedom of 3D printing even allowed them to reconsider the shape of the holes -instead of drilling round holes, the part is built with flat openings to improve atomization and increase burner efficiency. Where the previous design was able to reduce fuel use to 120 kilograms per hour, the new design cut fuel use to just 38 kilograms per hour. With three burners per ship, the environmental impact across an entire fleet can be huge. The savings can be equally significant -per ship, the new atomizer could save companies between $90,000 and $160,000 in fuel costs annually, and can be produced in few days for less than half the cost of a traditionally manufactured fuel atomizer.

Fuel Atomizer customizing designed and printed with Desktop Metal Studio System
Burner Tip customizing designed and printed with Desktop Metal Studio System

YE-6 Burner Tip–Cost Savings 72%

A key component in the efficient operation of industrial burners, burner tips are used to control the injection of fuel into the combustion chamber, or as atomizers, mixing fuel with an atomizing medium like steam to increase burner efficiency. The burner tip -originally cast and post-processed via CNC machining -was first manufactured 30 years ago, and the tooling used to produce it is no longer available. Because the part is too complex to machine as a single component, manufacturing spare parts using traditional techniques would require large investments in both time and money. Instead, John Zink engineers looked to 3D printing to produce a cost-effective replacement burner tip. Using the original engineering drawings, they modeled the burner tip and printed the part on the Studio System.The finished part was produced in just weeks -as opposed to months -and cost significantly less than a cast part -just a few hundred dollars versus a few thousand dollars.

Laser Gas Nozzle–Impossible Geometry for Traditional Manufacturing

A useful tool found in many machine shops, laser cutters can make precise cuts in a variety of materials.The challenge for John Zink engineers was the cutter’s nozzle could become clogged or slag could build up on the edges of cut parts, requiring labor-intensive post-processing. The solution they found was to use the Studio System to design and print an entirely new nozzle, one that incorporates a series of internal channels to direct high-pressure nitrogen gas across the cuts and blow away slag, preventing clogs and ensuring cleaner cuts. The complex geometry of the new nozzle could only be made using additive technology, and was printed in metal after an earlier version -printed from PLA plastic -melted at higher temperatures. Machine Tool Handles–When Plastic Just Won’t WorkAdditive technology has helped John Zink engineers recreate legacy parts and redesign existing parts, as well as helped them find creative solutions that improve how they manufacture those parts. Designed by a machinist with three decades of experience at John Zink, these handles were created to make it easier to lift and place heavy tools in a lathe, and were printed using the Studio System after the initial parts -printed in plastic -broke. The handles were printed rather than machined to minimize waste -each handle would have to be made from a relatively large piece of metal -and to leave machine shop capacity free for customer jobs.

Safety Shutoff Yoke and Handles–Less Down Time with Huge Savings

A key piece of safety equipment, this shutoff yoke and handles are installed on the USS Blue Ridge (LCC-19), which provides command, control, communications, computers, and intelligence support to the commander and staff of the United States Seventh Fleet. Because no tooling exists for this part, creating them via 3D printing was the most time-and cost-effective option for manufacturing. For customers, the payoff has come in less down time -printed parts can be in their hands and installed in days rather than weeks or months -and significant savings, both in part costs, and in fuel, thanks to innovative new designs that can only be manufactured via 3D printing.

“By eliminating the need for hard tooling with the Studio System,John Zink engineers have been able to produce innovative new parts, reproduce parts for which tooling no longer exists and find creative solutions to improving their workflow,” said Myerberg. “As a result, their team has been able to significantly speed up the design, manufacture and deployment of parts, while saving money and delivering parts faster to customers.”

According to Myerberg, as companies like John Zink look to expand their Additive Manufacturing capabilities, adopting additional technology like the Desktop Metal Shop System will help “broaden their portfolio, taking them from prototyping and aftermarket replacement parts to true mid-volume production runs of complex metal parts. Expanding their product portfolio will open up even more opportunities to provide the right solutions to their customers and further reduce costs.”

Please do read the official article here and you can also download the official E-Book by Desktop Metal here.

Read More

BMW Group opens its new Additive Manufacturing campus with Desktop Metal’s Participation

The BMW Group has officially opened its new Additive Manufacturing Campus in Munich, Germany. The new centre, which began development in April 2018, is said to bring together the production of metal and plastic prototype and series parts under one roof, as well as research into new AM technologies, and associate training for the global rollout of toolless production. 

The campus is the result of an investment of €15 million and is expected to allow the BMW Group to develop its position as technology leader in the utilisation of Additive Manufacturing in the automotive industry. In 2019, BMW produced about 300,000 parts by AM. The new AM Campus currently employs up to eighty associates and operates about fifty industrial AM machines that work with metals and plastics.

BMW’s Additive Manufacturing campus employs up to eighty associates and operates about fifty industrial AM machines (Courtesy The BMW Group)

Our goal is to industrialise 3D printing methods more and more for automotive production, and to implement new automation concepts in the process chain.

Speaking at the opening ceremony, Milan Nedeljković, BMW AG Board Member for Production, stated, “Additive Manufacturing is already an integral part of our worldwide production system today, and established in our digitalisation strategy. In the future, new technologies of this kind will shorten production times even further and allow us to benefit even more fully from the potential of toolless manufacturing.”

“Our goal is to industrialise 3D printing methods more and more for automotive production, and to implement new automation concepts in the process chain,” added Daniel Schäfer, Senior Vice President for Production Integration and Pilot Plant at the BMW Group. “This will allow us to streamline component manufacturing for series production and speed up development.”

“At the same time, we are collaborating with vehicle development, component production, purchasing and the supplier network,” he continued, “as well as various other areas of the company to systematically integrate the technology and utilise it effectively.”

Cooperating with the AM industry to drive development

The advancement of AM at BMW has been the result of many years of in-house expertise and cooperations to advance the technology. Jens Ertel, Director of the Additive Manufacturing Campus, explained, “Over the last thirty years or so, the BMW Group has developed comprehensive skills, which we’ll continue to enhance on our new campus, which has the latest machines and technologies.”

“In addition, we develop and design components that are faster to produce than by conventional means, offer flexibility in terms of  their form, and are also more functional,” Ertel continued. “We are working hard to mature Additive Manufacturing fully and benefit from it as far as possible throughout the product life-cycle, from the first vehicle concept through to production, aftersales and its use in classic vehicles.”

A part produced using Desktop Metal Additive Manufacturing technology at BMW’s Additive Manufacturing Campus (Courtesy The BMW Group)

Access to the latest technologies is reportedly gained through long-standing partnerships with leading manufacturers and universities, and by scouting for industry newcomers. In 2017, The BMW Group became involved with Desktop Metal’s sinter-based metal AM technologies, and continues to collaborate closely with the company. 

In the same year, BMW I Ventures – the group’s venture capital division – invested in the US start-up Xometry, a platform for on-demand manufacturing, including advanced technologies such as AM.

Its latest investment was in the German start-up ELISE, which allows engineers to produce ‘component DNA’ containing all the technical requirements for the part, from load requirements and manufacturing restrictions to costs and potential optimisation parameters. ELISE then uses this data, along with established development tools, to automatically generate optimised components.

Additive Manufacturing in research and pre-development at BMW Group

The pre-development unit of the Additive Manufacturing Campus optimises new technologies and materials for comprehensive use across the company. The main focus is on automating process chains that have previously required large amounts of manual work, to make AM more economical and viable for use on an industrial scale over the longer term.

For the development of AM processes for use on an industrial scale, research projects are especially important. BMW is involved in several of these projects, such as the Industrialisation and Digitisation of Additive Manufacturing for Automotive Series Production (IDAM) project, supported by the German Ministry of Education and Research. 

One of the Additive Manufacturing Campus’s eighty staff inspects a metal additively manufactured component (Courtesy The BMW Group)

With IDAM, the BMW Group and its twelve project partners hope to pave the way for the integration of AM into series production environments within the automotive industry. At the Additive Manufacturing Campus, a production line is being set up that replicates the entire process chain, from the preparation of digital production through to manufacture and reworking of components. 

The IDAM team is now preparing it for the specific requirements of series, individual and spare-part production. According to the group, production targets confirm the status of this collaborative undertaking as a lighthouse project: output is expected to total at least 50,000 series components a year, with over 10,000 individual and spare parts, all produced to a very high quality.

Applications in series production

The BMW Group first began its Additive Manufacturing of prototype parts in 1991, for concept vehicles. By 2010, both metal Additive Manufacturing and plastic AM processes were being rolled out across the group, initially in smaller series, to produce items such as the additively manufactured water pump wheel in DTM race cars. 

Further series production applications followed from 2012 onward, with a range of components for the Rolls-Royce Phantom, BMW i8 Roadster (2017) and MINI John Cooper Works GP (2020), which contains four AM components as standard.

Read original article here.

Read More

New Case Study by PostProcess and Splitvision: Building on Manufacturing Expertise with Automated 3D Post-Printing

Splitvision, headquartered in Stockholm, Sweden, found the ideal product development formula by combining its talented design team and deep manufacturing experience to deliver competitive solutions for its customers. However, to continually to deliver on that promise requires a culture that embraces leading-edge manufacturing methods and process. That is what brought Splitvision to PostProcess, as they explored a better way to streamline and maximize its 3D printing with DLP resin removal innovation.

QUESTION: Can you give us some background on Splitvision and how you utilize additive manufacturing?

ANSWER:We have been developing products since 1989. From initially strictly offering industrial design, we have broadened our service portfolio over the years to become a full turnkey solution provider for product realization. We have always made prototypes from Polyurethane (PU) foams or solid plastic materials to evaluate form and ergonomics, which we have traditionally done using hand tools. On more detailed prototypes or models with high cosmetic demands, we used to outsource to either print shops in Sweden, or prototype services in China. In 2019, we decided to invest in a Digital Light Processing (DLP) printer from 3D Systems called Figure 4 to speed up our processes while achieving better mechanical properties and fine feature details. In our experience, this is the only printer that can equip soft parts with Thermoplastic Elastomer (TPE)-like performance.Since many of the products we develop and produce for the hearing aid industry are comprised of a combination of both TPE and hard plastic, this was a deciding factor. We can now evaluate fit and assembly on a detail level before actu-ally making the injection tools, typically saving us from 1-2 iterations of tool tuning. We also design casings for electron-ic products, and by using the Figure 4 printer to make smallseries production of those, it is possible for our customers to do field testing and user studies without investing in mass production tools. Needless to say, the DLP printer has brought massive value not only to our workflow, but to our customers as well.

QUESTION: Before introducing the PostProcess solution, what sort of bottlenecks did you experience in your additive workflow?

ANSWER: The design casings that I mentioned of-ten have lots of intricate crevices like screw towers, small slots, and many ribs. It can be a very tedious job to fully clean the resin off of these features with a traditional solution like isopropyl alcohol (IPA). That excess manual labor makes the unit cost for those parts unnecessarily high. Even if the printer used is efficient and several parts can be manufactured in one run, the unit cost still does not go down much since so much time is needed to clean each part in-dividually.

Example DLP parts from Figure 4 printer

Apart from being time-consuming, the work environment also gets compromised by the strong smell from the IPA. Not to mention, we were always concerned about the fire risk posed by IPA. That is where the PostProcess solution was able to really streamline our post-printing process and improve workplace safety overall.

QUESTION: How did the PostProcess solution fit into your additive workflow, and how has it most significantly improved your efficiencies/work environment?

ANSWER: In January 2020, we got the opportunity to try a resin removal system from PostProcess that utilizes their proprietary Submersed Vortex Cavitation (SVC) technol-ogy. The system uses ultrasonic cleaning, agitation, and controlled temperature for the process. The detergent included with the system has a high flammability point, which means it does not ignite from a spark at the machine’s working temperature. Apart from being more pleasant to work with, the detergent seems to be especially efficient at dissolving the uncured DLP resin. Usually, it removes resin completely in just a matter of minutes. In some cases, with deep narrow features, the cycle time can be a little longer, but we have never had a part require more than 10 minutes of processing time.

As an example, a small electronics case took about 30 minutesper part for rinsing and drying. Previously, it was difficult to see if it was fully clean before drying off the IPA with compressed air. You would have to rewash it in IPA, use a brush where it was not clean, and repeat it a few times until it looked good. Now, running this same part in the PostProcess solution, the total cycle time for consistently complete resin removal is only 4 to 5 minutes for a batch of 10 at once. The benefit here you can see is improving from 30 minutes per part down to all 10 parts in less than 5 minutes.

Thanks to how efficient the PostProcess solution is within our workflow, we can now leave the support structure intact on parts when we need to do UV post-treatment of the DLP resin. This was never pre-viously possible with traditional IPA cleaning because it was extremely difficult to get rid of all uncured resin behind the supports. An added bonus is that we can load printed parts into the PostProcess machine without ever removing them from the build tray, eliminating the need to clean the tray separately, removing another tedious process.

We can now offer printed parts at a reasonable price, especially when printing multiple items in one run. Plus, the nasty bit of the printing process has been eliminated for our staff. After having tried the PostProcess solution, it’s hard to imagine ever going back to using IPA.

About Splitvision

Starting out as a design agency, we have over the years integrated the design process with a manufacturing system that can ensure our customers original idea’s integrity while maintaining control over costs and speed up the time to market. We are designers, engineers, buyers, sourcing specialists, QC specialists, logisticians, project managers and businesspeople who love to make good things. We have offices in Stockholm, Sweden and in Shenzhen, China. With more than 30 years of experience in product development, we strive to direct our talented design team to deliver competitive solutions to our customers using our expertise within; Design Strategy, Product and Transportation Design, HMI / GUI, Advanced 3D Modelling, Mechanical Engineering, and Prototypes.

But what really makes us unique is our manufacturing experience so when engaging Splitvision for product design, you also get access to significant manufacturing experience as well. We offer manufacturing services within a wide range of techniques and materials through a trusted partner network. The main focus is on injection molded plastic with high functional and cosmetic demands. Our customers range from start-up-brands outsourcing the production of their core product, to large corporations out-sourcing the design and manufacturing of their accessories. Learn more at

About PostProcessPostProcess

Technologies is the only provider of automated and intelligent post-printing solutions for 3D printed parts. Founded in 2014 and headquartered in Buffalo, NY, USA, with international operations in Sophia-Antipolis, France, PostPro-cess removes the bottleneck in the third step of 3D printing – post-printing – through patent-pending software, hardware, and chemistry technologies. The company’s solutions automate industrial 3D printing’s most common post-printing pro-cesses with a software-based approach, including support, resin, and powder removal, as well as surface finishing, resulting in “customer-ready” 3D printed parts. Additionally, as an innovator of software-based 3D post-printing, PostProcess solu-tions will enable the full digitization of AM through the post-print step for the Industry 4.0 factory floor. The PostProcess portfolio has been proven across all major industrial 3D printing technologies and is in use daily in every imaginable manu-facturing sector.

2495 Main St., Suite 615, Buffalo NY 14214

Les Aqueducs B3, 535 Route des Lucioles, 06560 Sophia Antipolis, France
+33 (0)4 22 32 68 13

official website:

Read More

PRESS RELEASE – Cetim and Desktop Metal Partner to Accelerate the Adoption of Global Metal Additive Manufacturing

Cetim, the Technical Centre for Mechanical Industry, and Desktop Metal, the company committed to making 3D printing accessible to manufacturers and engineers around the world, today announced a partnership to accelerate the global adoption of metal additive manufacturing. Cetim, which works closely with industrial companies to help to identify market opportunities and facilitate innovation and technical progress, will become one of the first adopters of the new Desktop Metal Shop System™, the world’s first metal binder jetting system designed for machine shops and metal job shops.

This announcement builds on the early momentum Cetim is seeing with the installation of the Desktop Metal Studio System™ into its Cluses, France facility. With both the Studio System, for rapid prototyping and low volume production of metal parts, and now the Shop System, Cetim’s customers, which span aerospace, oil and gas, automotive and other industries, will be able to explore new advanced solutions for their manufacturing needs – from low-volume prototyping to mid-volume runs of complex metal parts.

“As the demand for metal AM continues to grow, it is challenging for many of the mechanical industry companies we work with to identify the right solution that meets their needs and then to implement it in an effective and cost efficient way,” said Pierre Chalandon, Chief Operating Officer at Cetim, the Technical Centre for Mechanical Industry based in France.

“Desktop Metal technologies with both the Studio System and new Shop System completes our additive manufacturing machines park. From a general point of view, Metal Binder Jetting Technology is promising for a large part of our clients. Desktop Metal solutions portfolio covers the full metal product lifecycle, which is complementary to our experience on sintered material and finishing Operations,” Chalandon said.

In addition to the implementation of both the Studio System and Shop System, Cetim and Desktop Metal plan to collaborate on a variety of research initiatives leveraging Desktop Metal’s technologies, including design for metal AM processes, post-processing and finishing techniques qualification, workflow optimization and materials development, among others.

The Shop System, launched during Formnext 2019 in Frankfurt, Germany, enables shop owners to leverage affordable, high-quality binder jetting technology to print end-use metal parts with unparalleled speed, print quality, and productivity. Offering the most cost-effective solution in the industry starting at $150,000 USD for the printer, this high-speed, single-pass print engine helps shop owners eliminate many of the constraints previously seen with traditional manufacturing methods like CNC machining and tap into new opportunities to reduce their costs and increase revenue.

The Studio System, the world’s first office-friendly metal 3D printing system for functional prototyping and low volume production, is designed to make metal 3D printing more accessible, enabling design and engineering teams to print metal parts faster, without the need for special facilities, dedicated operators, or expensive tooling. The three-part solution, including printer, debinder and furnace, automates metal 3D printing by tightly integrating through Desktop Metal’s cloud-based software to deliver a seamless workflow for printing complex metal parts in-house – from digital file to sintered part.

“When it comes to empowering industrial companies with the additive manufacturing technologies of the future, Cetim is truly one of the leaders in Europe,” said Ric Fulop, CEO and co-founder, Desktop Metal.

“We are excited to partner with Cetim as one of the first customers for our ground-breaking Shop System and are eager to collaborate with Cetim on our shared efforts to change the way that companies manufacture around the globe.”

Cetim is one of the French leaders in metal additive manufacturing development, with different platforms and associated partners, covering almost all the direct and indirect technologies including LPBF, WAAM and MBJ dedicated to the transfer to industrials. Cetim is also strongly involved in international normalization of metal additive manufacturing. Cetim coordinates AFH, the initiative Additive Factory Hub which aims to innovate, develop and integrate additive manufacturing to address the key industrial and economic challenges.

Cetim has been involved in additive manufacturing for more than 15 years and has been developing specifically the Metal Binder Jetting technology for five years, from the design, the process, the characterization to the finishing steps. MBJ technology is opening new opportunities, increasing the production capacities, decreasing the global cost and allowing new materials.


As the leading French player in the fields of mechanical engineering innovation and R&D, Cetim has built up a wide network of partners. Its engineers and technicians operate in more than 30 countries each year. R&D function is carried out either within specific sectors or cutting across sector boundaries, and within either a national or an international context. It embraces a range of complementary aspects, including prospective studies in conjunction with international scientific communities, R&D concerning all areas of mechanical engineering, industry-specific studies and projects, and the large-scale federative technological projects. Cetim provides a comprehensive array of services to the mechanical engineering industry from consulting to testing and from engineering to training in new skills. Cetim is labelled Carnot institute, member of the Réseau CTI and of the Alliance Industrie du futur.

About Desktop Metal

Desktop Metal, Inc., based in Burlington, Massachusetts, is accelerating the transformation of manufacturing with end-to-end 3D printing solutions. Founded in 2015 by leaders in advanced manufacturing, metallurgy, and robotics, the company is addressing the unmet challenges of speed, cost, and quality to make 3D printing an essential tool for engineers and manufacturers around the world. Desktop Metal was selected as one of the world’s 30 most promising Technology Pioneers by the World Economic Forum; named to MIT Technology Review’s list of 50 Smartest Companies; and recognized among the most important innovations in engineering in Popular Science’s “Best of What’s New.” For more information, visit

Read More

Ceramic Applications with XJet – XJet Blog June 2020

Can AM unlock some of ceramic’s lesser known material properties?

Dror Danai, CBO, XJet

Working with many ceramics manufacturers over the last few years I’ve noticed there are a few ‘go to’ material properties – hardness, durability, heat resistance and insulation – that are generally associated with ceramics. However, when I look at some of the developments coming out of ceramic additive manufacturing (AM), the ‘hero’ material characteristics that make new trailblazing applications possible are often those that are rarely mentioned – such as being nonmagnetic or chemically inert, or the material’s unique dielectric constant.

Non-magnetic cryotherapy prove for use on an MRI

A new hero in town?

Take for instance Marvel Medtech’s cryotherapy probe. The intent of the device is to treat early stage breast lesions suspected of being or becoming cancerous with cryoablation before a diagnosis is even made. The device works on an MRI, so if lesions are detected, cryoablation can be used to treat the area immediately, using the MRI to guide the probe. This preventative treatment is expected to have a huge impact in preventing the recurrence and spreading of the disease, which is the most common cancer for women across the world. The result will be more lives saved, improved quality of life, and lower healthcare costs.

Marvel MedTech’s cryotherapy probe for 100% removal of breast cancer lesions

The University of Delaware’s Passive Beam Steering antenna tells a similar story. UDEL (University of Delaware) set about developing an antenna in response to the challenge of rolling out the 5G network; whilst 5G signals deliver data 10-20 times faster than 4G, they are also more sensitive to interference, requiring a vast increase in antenna number to provide reliable signal. UDEL’s design delivered the small, lightweight, cost-effective antennae needed to meet the volume increase but also required smooth, accurate inner channels to retain wave direction, with the right dielectric constant so signals would not be absorbed and weakened. In this case, the dielectric constant of ceramic was the hero characteristic, which was once again unlocked by the complex geometries enabled by AM.

Exact dielectric constant for creating a perfect Passive Beam Steering antenna
University of Delaware’s Passive Beam Steering antenna is potentially a game-changer in the roll-out of 5G

A third notable application is earbuds, another device produced with XJet ceramic additive manufacturing. Like the 5G antenna, smooth, accurate internal channels are essential to provide an elevated acoustic experience. In addition, whilst the vast majority of earbuds on the market today are constructed from plastic and metal components with gel cups and rubber for comfort, an issue with these materials is that they generally break down over time due to exposure to the liquids and wax that are naturally found in our ears. When components are made from chemically inert ceramics, the earbuds typically have a much longer lifespan, as luxury lifestyle brands are discovering.

Chemically inert earbuds with smooth internal channels for a clean sound

Epic opportunity

The recently released SmarTech Analysis 2020 Report predicts that ceramic AM will grow from the $184 million market it was in 2019 to a $4.8 billion opportunity in 2030. I believe the applications I’ve talked about above, made possible with AM, just scratch the surface. Many ‘impossible’ feats will be made possible, unlocked by additive manufacturing, as ceramic material properties and applications are explored further. With that, it’s an attainable prediction and I’m very much looking forward to the ingenuity and invention that is inspired on the journey.

Read More