Additive manufacturing technology company expands offerings to include high-performance composites.
By Senior Editor, CompositesWorld
Desktop Metal (Burlington, Mass., U.S.), a company that specializes in metal 3D printing for product development and mass production, has announced it will expand its technology to include the composites community. Desktop Metal was founded in 2015 with a mission “to make 3D printing accessible for all engineers, designers and manufacturers,” and since then the company has brought two 3D printing technologies to market — its office-friendly metal 3D printing Studio System and its high-volume Production System metal 3D printer, which is capable of printing speeds up to 12,000 cm3/hr. Now, the company is unveiling what it says is the world’s first true continuous fiber desktop printer.
“We are now expanding our offering to bring continuous fiber 3D printing to the desktop of every engineer and designer,” says Ric Fulop, CEO and founder of Desktop Metal.
Recent advances in additive manufacturing have seen its use become increasingly widespread for prototyping, as well as for jigs, fixtures and tooling. Desktop Metal predicts the technology will experience 10-50X growth over the next decade as a means for manufacturing end-use parts. The company recognized an opportunity in the market to bring 3D printing to an underserved area — the automation of small composites parts manufacturing. Kicking off its entry into the composites sector, Desktop Metal recently acquired Make Composites Inc. (Boston, Mass., U.S.), a startup company founded by Konstantine Fetfatsidis. Fetfatsidis was recently named 2019 SAMPE Young Professional of the Year and served previously as the advanced manufacturing R&D lead at Aurora Flight Sciences (Manassas, Va., U.S.), a Boeing company.
Fetfatsidis, now vice president of composites products for Desktop Metal, explains his inspiration for starting Make. “Based on my experience in composites R&D and also in aerostructures business development dealing with customers, I got to see and work with what was accessible and the various manufacturing technologies available, and frankly got a little bit frustrated with hand layup still being state-of-the-art, particularly for the smaller parts,” he says.
He argues that for small parts — less than 20 pounds — manufacturers still rely primarily on hand layup. Such labor-intensive processes require technicians, expensive tooling and a lot of time, all of which increase the overall cost of manufacturing a part.
“Throughout my career there have been so many applications where we’d have loved to use carbon fiber — particularly at Aurora while working on eVTOL concepts — for its lightweight properties, stiffness and the strength, but the costs just didn’t add up,” says Fetfatsidis. “I thought to myself, there’s got to be a better way to automate, consolidate the number of process steps involved in traditional manufacturing, reduce tooling and reduce lead times — all the costs associated with it.”
While attempts have been made to automate the manufacture of small composite parts, the properties rarely reach the quality that industrial users are accustomed to with hand layup, and certainly not in a desktop process. In most composites 3D printing today, the resins are often not the same as those used in traditional processes, and many printers use proprietary materials that do not offer the same high performance as qualified materials, leading to non-uniformity and variability in quality. Resulting parts typically have lower fiber volume content and higher porosity than parts manufactured by hand.
“Really there has been no end-to-end solution to do this on a desktop level with the materials that folks are used to using, until now,” says Fulop. “We’re combining the benefits of 3D printing with continuous fiber materials that are qualified for high-performance applications.”